Job openings

Below you can find all our current job openings. If you find one that suits you, let us know by applying today!

NIRA Engineering Summer Internship 2020

NIRA Dynamics is at the forefront of embedded and cloud-based software products, providing cost-efficient, value-adding services to the global vehicle industry. Customers include some of the world’s leading car manufacturers, such as Audi, Volkswagen, Seat, Skoda, Volvo and Renault. With 90 co-workers, global presence and software running in over 50 million vehicles, NIRA Dynamics is a worldwide industry leader in their segment.

This is what you will do

Each year we run NIRA Engineering Summer Internship with the purpose of finding talents for different parts of our expanding organization. The internship is designed to give you an understanding of our core business and to start building a network within our organization.

You will get the opportunity to experience real life engineering work that cover a broad range of interesting challenges to tackle and you will quickly be able to apply your knowledge to real-world applications. From developing onboard systems used by world-leading car manufactures to working offboard, cloud-based innovations for autonomous cars.

You will spend the summer working with some of the best engineers in the industry. You will be given a mentor. You will learn and you will thrive.

SKILLS & REQUIREMENTS

  • BSc or MSc engineering student within Applied Physics, Computer Science or Mechanical Engineering.
  • You are curious about new technology and a strong problem solver and have a strong academic record
  • Fluency in English, both written and spoken
  • Ability to work independently, take initiative and be creative and curious
  • "A true doer instinct" with the ability to take ideas all the way from thoughts to actions, without any frills.
  • You are a true team player with great communication skills. Listen, ask for help, give feedback and interact with the team’s best in mind.

The selection process will be on a continuous basis, we therefore highly recommend you submit your application as soon as possible.

Student opportunities Linköping
Apply by: 2020-02-07

Master Thesis: Robust Cog Error Estimation Algorithm

Your Role

This master thesis will be carried with assistance from our Development team. This team’s daily work involves maintaining and improving our on-board algorithms to meet tomorrow’s performance requirements. The main products are our Tire Pressure Indicator (TPI) and Loose Wheel Indicator (LWI) – both of which implement advanced signal processing to estimate features, without the need for additional sensors.

Description

Our algorithms are heavily reliant upon high resolution wheel speed signals. The raw format for these wheel speed signals is the elapsed time between two flanks of the wheel cog encoder. As these cogs are subject to mechanical inaccuracies, their errors must be estimated and compensated for. The main focus for this thesis project is to investigate filters and/or algorithms that, in a robust manner, can estimate the mechanical errors of the cog wheel. Two possible approaches are described below.

Kalman Filter Adaptation

Investigate how Kalman filter-principles can be incorporated with the existing algorithm for estimating cog errors.

- How should the state uncertainty be updated?

- How can the filter quickly, but without overshooting, estimate the cog errors after a reset?

- How can we utilize the knowledge that the sum of states is equal to one complete revolution?

Outlier Rejection

Unrepresentative signal samples may be encountered while hitting a pot hole or when a cog is missed by the encoder. These require special attention and should be discarded before entering the cog error estimation. If included in the estimation scheme, an inaccurate wheel speed signal may be calculated.

- How can outlier rejection be implemented to discover and intelligently discard deviating signal samples?

- Can this be combined with the Kalman approach described above to achieve a quick convergence when returning to correct signal samples?

Your Profile

We are looking for an engineering student who are studying their last year of a technical aimed at signal processing, sensor fusion, statistical modeling and software development. An interest in vehicle mechanics is encouraged. We expect you to have excellent study results (average 4 or higher) and that you are driven, can take initiative and work independently. The project will be carried out at our head office in Linköping.

Looking forward to your application! Don’t forget to include personal letter, CV and course listing with grades. Applications are considered on a rolling basis. 

Student opportunities Linköping
Apply by: 2020-01-31

Can't find what you're looking for?

You can always send an open application!